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INTRODUCTION 
 
Vibrations are the oscillations of a mechanical system about an 
equilibrium position and are caused by restoring forces or 
moments within the system. The energy imparted by an external 
source lead to vibrations and, if uncontrolled, can result in 
catastrophic failures of a mechanical system. Rao reported that 
mechanical failure of machinery is a major cause of large 
industrial accidents that account for about 38% of total 
accidents [1]. Since the collapse of the Tacoma Narrow Bridge 
in the USA in 1940, vibration theory has advanced so much 
that engineers and scientists are able to control or eliminate its 
detrimental effects. 
 
Vibration theory is a complex subject and students often 
experience difficulties with the subject. For a number of years 
now, instructors in mechanical vibrations have been working to 
find better ways to assist students to relate theory learnt in class 
with physical models. To enable students to visualise the 
phenomena of vibrations, Parker developed an experimental rig 
that allowed students to relate vibration mode shapes obtained 
from Finite Element Modelling (FEM) and validation of the 
results using physical simulations [2]. Daniel and co-workers 
integrated physical models and computer models into a 
comprehensive, coherent and understandable practical testing 
of a two-degree-of-freedom model of an aircraft wing [3]. This 
model was driven by a motor to simulate the turbine engine of a 
real aircraft. 
 
At Pennsylvania State University, Perez-Blanco and colleagues 
developed a series of laboratory sessions to demonstrate the 
concepts of dynamics and vibrations to undergraduates 
studying at the university [4]. The practicals allow the students 
to measure displacement and calculate damping characteristics 
and natural frequency. They reported that 70% of the students 

indicated that the laboratory enhanced their understanding of 
the subject. 
 
COMPUTER SIMULATION 
 
An economical and flexible approach to assist student learning 
is computer simulation. The Longitudinal Vibration Simulator 
(LVS) is a potentially useful computer application that allows 
students to enter system parameters for different beam 
configurations and watch the resulting animations of stress field 
distributions. Slater and Gramoll applied the simulator to allow 
students to explore experimental learning where traditional 
teaching methods can sometimes appear to be unclear and 
confusing [5]. By using the program, students can control the 
cyclic time and obtain animations of the beam motion as well as 
readings for calculation of motion. 
 
Askari and Davis report on the application of Visual Basic to 
determine the dynamic characteristics of a beam subjected to 
rotating unbalanced forces [6]. The experimental rig reduces 
the students’ time to perform tedious hand calculations and 
graphical plots, thus providing valuable time for the students to 
learn the subject. 
 
Finite Element Analysis (FEA) 
 
A method widely used in the design process of products and 
machinery is Finite Element Analysis (FEA) [7]. Its main 
benefits include the prototyping and developing of machinery 
without incurring heavy capital costs in the manufacturing of 
real models. Vibration analysis can also be performed with an 
FEA model. However, the reliability and accuracy of the 
technique depend on the construction of the model in order to 
represent the true behaviour of real systems and can, at  
times, be questionable. Physical tests involving impact  
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hammer method of vibration testing provides a relatively quick, 
accurate and cost effective method in validating FEA models. 
 
In this paper, the vibration testing of 1DOF and 3DOF 
structures is used to provide students with visualisation of 
vibration mode shapes. The models were developed to provide 
a physical representation of real-life systems analogous to some 
of the spring-mass systems theory taught in the class. 
Experimental tests were performed on these models to 
determine the natural frequencies and vibration mode shapes. 
The model was attached to a shaker table that was excited using 
a sine wave generator swept over a range of frequency. When 
the excitation frequency was close to a natural frequency of the 
test structure, it was observed that the structure exhibited large 
deflections. 
 
Mode shapes of the vibrating structure were visualised and 
captured using stroboscopic methods. The mode shapes were 
compared with those measured and those determined from 
theory using FEA. The FEA animations allow students to 
compare the analytical response to that observed on the shaker 
rig. At the higher frequencies, the modal deflections of the 
structure were small, and hence were difficult to observe and 
capture photographically. However, touch and sound permitted 
the physical realisation of the modal deflections at these higher 
resonant frequencies. 
 
EXPERIMENTAL METHOD 
 
The first step of the learning process involved vibration testing 
using an impact hammer to determine the natural frequencies 
and mode shapes. Impact hammer theory states that if an object 
is impulsively struck, it is simultaneously excited at a range of 
frequencies. Controlling the impact period can change the 
frequency span of interest. Figure 1 shows the experimental 
apparatus. 
 

 
 
Figure 1: Measurement of a 1DOF structure’s natural 
frequencies. 
 
Measuring the impact force (with a force transducer mounted 
just behind the hammer tip), and the positional response of the 
excited object (with an accelerometer), allows a frequency 
response curve to be obtained for the object. The Dynamic 
Signal Analyser (DSA) converts the measurement from the time 
domain to the frequency domain. The frequency response curve 
can be used to determine the object’s behaviour such as its 
natural frequencies, damping ratio and mode shapes. 
 
The impact hammer used was modally tuned. Modal tuning 
involves a suitable structural design for the hammer that 

enables the hammer’s response to be isolated from the 
structural response. This enables an accurate measurement of 
the structural response and not the combined system (impact 
hammer and structure) response. 
 
MODELLING 
 
In order to overcome the lower frequency limit of the  
signal analyser, the structure’s thickness was reduced to 2mm. 
For visualisation of mode shapes a 1mm structure was  
used. Figure 2 shows a wire frame drawing of the 1DOF and 
3DOF models. The models were constructed using thin steel 
strip of 0.364 m in height, width of 0.025 m and thickness of 
0.002 m. 
 

 
 
Figure 2: Wire Frame Models of the Structure, (a) 1DOF and 
(b) 3DOF. 
 
The equations of motion for the system can be written using 
methods outlined in Steidel [8]. The method used here is to sum 
the spring forces that exist in the horizontal direction due to a 
displacement of the mass. The free body diagram is seen in 

Figure 3. The effective spring constants, kkkk === 321  

due to the lengths being equal between the masses. The 
equations of motion according to Newton’s Law in matrix 
format is given by: 
 

[ ] { } [ ]{ } { }0M X K X+ =&&        ( 1 ) 

 

 
 
Figure 3: The 3DOF model (left) and the free body  
diagrams. 
 
With the springs mass taken into consideration the equation 
with effective mass is given by: 
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[ ] { } [ ] { } { }0EFFM X K X+ =&&        ( 2) 

 
Providing that the vibration is assumed to be simple harmonic 
motion, then Eqns (1) and (2) become: 
 
([k] - ω2[M]){X} = 0       ( 3 ) 
 
and 
 
([k] - ω2[MEFF ]){X} = 0         ( 4 ) 
 
respectively. By solving the matrix equations, the first three 
natural frequencies are found. The eigen values can be 
calculated using MATLAB. 
 
RESULTS 
 
The experimental tests involved placing additional masses onto 
the three plates and measurement of the natural frequencies. 
The results for the 13 tests using the effective mass matrix are 
shown in Table 1. 
 

Table 1: Modal frequencies. 
 

Vibration Modes Tests (Hz) Calculations (Hz) 
1st Mode 15-28 15-29 
2nd Mode 42-78 42-82 
3rd Mode 60-112 61-119 

 
The experimental set-up for the visualisation model is as  
shown in Figure 4. A shaker with function generator is used  
to excite the structure in a horizontal manner. Visualisation  
of the mode shape is obtained using a stroboscope that froze  
the motion of the model at resonant frequency. If the  
excitation frequency is at the stroboscope flashing  
frequency, the oscillating model will be seen to vibrate in slow 
motion. 
 

 
 

Figure 4: Visualisation experiment set-up. 
 
The mode shape representations measured for the 1DOF and 
the 3DOF models are shown in Figure 5. Most striking in this 
rendition of the mode shapes is the slope at the positions of 
fixture to the plate elements. In nearly all cases, the slope is 
zero at the fixture elements (positions 3, 6 and 9 correspond to 
the bottom, middle and top floors). This is a sign that the 
fixture is not entirely built-in, which is the basis for calculation 
of the spring modulus. 
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Figure 5: Mode shapes for the 1DOF and 3DOF structures. 
 
DISCUSSION 
 
Adding masses onto the floors of the structure lowers the 
natural frequencies for both the 1DOF and 3DOF models. A 
practical relevance of the experimental rig is that the students 
can relate these tests to real-life structures and by altering the 
mass, the structure’s natural frequencies can be altered to avoid 
catastrophic failures. 
 
The Finite Element Models gave the natural frequencies as 
outlined above in Tables 2 and 3. Both the Beam 189 and Solid 
187 provided similar animations of the mode shaped and these 
matched the mode shapes actually seen in the visualisation 
process. The results obtained using the Beam 189 model were 
obtained with much less modelling input, and also required less 
expensive computing time. The Solid 187 model required a 
very fine mesh and took longer computer time. Symmetry was 
used to reduce the excessive computing times, which were of 
the order of three minutes compared to almost instantaneous 
results obtained using the Beam 189 model. Torsion was seen 
in the Solid 187 models. 
 

Table 2: Natural frequencies of the 1DOF structure. 
 

Mode Beam 189 Solid 187 Measured 
1 11.634 11.631 10.75 
2 88.241 88.241 87 
3 232.20 232.20 231 

 
Table 3: Natural Frequencies of the 3DOF Structure. 

 
Mode Beam 189 Solid 187 Measured 

1 28.651 28.543 26 
2 81.481 82.441 74.5 
3 119.652 124.711 113.5 

 
The effect of the upright mass and the added masses were 
investigated. When the spring mass was large in proportion to 
the total mass, large errors in the mathematical models were 
observed. When the added mass was increased, the measured 
properties became closer to the predicted values. Furthermore, 
as the mass was increased, the deflections were smaller and 
hence reduced the non-linear behaviour in the small mass 
models. 
 
The first three modes were visible for both structures using the 
visualisation apparatus. These were achieved using a strobe set 
flashing as the same frequency of the signal generator. Both 
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1DOF and 3DOF structures displayed large deflection at the 
first mode and were clearly visible. 
 
Figure 6 shows a typical mode shape of the 1DOF structure 
vibrating at the first mode. Higher modes were difficult to 
capture photographically, but could be either seen or else 
established by the use of fingers in order to find the positions of 
zero displacement. All modes were found within a small range 
of frequencies around those that were found using  
the impact hammer and those determined from ANSYS 
animations. 
 

 
 

Figure 6: Deflection of the 1DOF structure. 
 
CONCLUSION 
 
The modal impact hammer technique was shown to be  
an economical tool for teaching the vibration behaviour  
of simple structures to students. The resonant frequencies  
of both single and multiple degree of freedom models were 
easily measured using this particular method. This enables  
the mode shape behaviour to be observed at/or near the 
predicted natural frequencies. Mathematical models taught  
in an undergraduate vibration course were applied to the 
models. 
 

Finite Element Analysis (FEA) provided a further validation of 
the resonant frequencies and mode shapes. Instructions were 
produced enabling students to recreate the models using ANSYS 
software. Vibration behaviour exhibited in the laboratory could 
be observed to be similar to the behaviour predicted by the 
ANSYS software package. 
 
Computer simulation provides the link between mathematical 
theory and the phenomena observed and measured in the 
laboratory. This experiment, therefore, addresses the 
fundamental problem encountered in the learning of vibrations, 
which is a difficult and highly mathematical subject. 
Visualisation of structural vibration can provide a better 
learning experience and generate positive learning outcomes. 
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